12 research outputs found

    Genomic determination of minimum multi-locus sequence typing schemas to represent the genomic phylogeny of Mycoplasma hominis.

    Get PDF
    Background: Mycoplasma hominis is an opportunistic human pathogen, associated with clinically diverse disease. Currently, there is no standardised method for typing M. homins, which would aid in understanding pathogen epidemiology and transmission. Due to availability and costs of whole genome sequencing and the challenges in obtaining adequate M. hominis DNA, the use of whole genome sequence analysis to provide clinical guidance is unpractical for this bacterial species as well as other fastidious organisms. Results: This study identified pan-genome set of 700 genes found to be present in four published reference genomes. A subset of 417 genes was identified to be core genome for 18 isolates and 1 reference. Leave-one-out analysis of the core genes highlighted set of 48 genes that are required to recapture the original phylogenetic relationships observed using whole genome SNP analysis. Three 7-locus MLST schemas with high diversity index (97%) and low dN/dS ratios (0.1, 0.13, and 0.11) were derived that could be used to confer good discrimination between strains and could be of practical use in future studies direct on clinical specimens. Conclusions: The genes proposed in this study could be utilised to design a costeffective and rapid PCR-based MLST assay that could be applied directly to clinical isolates, without prior isolation. This study includes additional genomic analysis revealing high levels of genetic heterogeneity among this species. This provides a novel and evidence based approach for the development of MLST schema that accurately represent genomic phylogeny for use in epidemiology and transmission studies

    Conserved noncoding sequences highlight shared components of regulatory networks in dicotyledonous plants

    Get PDF
    Conserved noncoding sequences (CNSs) in DNA are reliable pointers to regulatory elements controlling gene expression. Using a comparative genomics approach with four dicotyledonous plant species (Arabidopsis thaliana, papaya [Carica papaya], poplar [Populus trichocarpa], and grape [Vitis vinifera]), we detected hundreds of CNSs upstream of Arabidopsis genes. Distinct positioning, length, and enrichment for transcription factor binding sites suggest these CNSs play a functional role in transcriptional regulation. The enrichment of transcription factors within the set of genes associated with CNS is consistent with the hypothesis that together they form part of a conserved transcriptional network whose function is to regulate other transcription factors and control development. We identified a set of promoters where regulatory mechanisms are likely to be shared between the model organism Arabidopsis and other dicots, providing areas of focus for further research

    Dari Trainer, Imam Ibadah Hingga Patronase Spiritual : Pelayanan Kbih Al-hikmah Kepada Calon/ Jamaah Haji di Kabupaten Brebes

    Full text link
    Some people stated that the roles of KBIH and its services toward pil­grims are questionable. Several KBIHs have been changed to businessinstitution rather than social institution. There is a kind of comodi.ficationof it. This paper argues, based on field research, that KBIH al-Hikmahhas given satisfied services to pilgrims. The services were not only inthe preparation of pilgrimages (manasik), but also during the pilgrim­ages in Mecca and and after the pilgrimages in Indonesia. In the prepa­ration of pilgrimages, the role of KBIH was a trainer - making candi­dates of pilgrims are more understanding and capable for practicingthe ritual. In Mecca, KBIH was not only as guider of long journey. butalso the imam of various rituals of pilgrimages. The role of KBIH hasbecome spiritual patronages ( ecclesiasticum] of pilgrims in the rest oftheir lifes

    Architecture and dynamics of the jasmonic acid gene regulatory network

    Get PDF
    Jasmonic acid (JA) is a critical hormonal regulator of plant growth and defense. To advance our understanding of the architecture and dynamic regulation of the JA gene regulatory network, we performed a high-resolution RNA-seq time series of methyl JA-treated Arabidopsis thaliana at 15 time points over a 16-h period. Computational analysis showed that methyl JA (MeJA) induces a burst of transcriptional activity, generating diverse expression patterns over time that partition into distinct sectors of the JA response targeting specific biological processes. The presence of transcription factor (TF) DNA binding motifs correlated with specific TF activity during temporal MeJA-induced transcriptional reprogramming. Insight into the underlying dynamic transcriptional regulation mechanisms was captured in a chronological model of the JA gene regulatory network. Several TFs, including MYB59 and bHLH27, were uncovered as early network components with a role in pathogen and insect resistance. Analysis of subnetworks surrounding the TFs ORA47, RAP2.6L, MYB59, and ANAC055, using transcriptome profiling of overexpressors and mutants, provided insights into their regulatory role in defined modules of the JA network. Collectively, our work illuminates the complexity of the JA gene regulatory network, pinpoints and validates previously unknown regulators, and provides a valuable resource for functional studies on JA signaling components in plant defense and development

    Computational and experimental analysis of plant promoters : identifying functional elements

    Get PDF
    Understanding the regulatory DNA sequences are becoming increasingly important in understanding the way plants integrate signalling cues mediated through the actions of the transcription factors (TFs). This thesis presents an interdisciplinary investigations into regulatory elements found in the promoter regions of a model organism Arabidopsis thaliana. The intergenic DNA sequences are studied between sets of orthologous genes in A. thaliana and 3 other related species to uncover hundreds of evolutionary conserved noncoding sequences (CNSs). The CNSs are found to be more skewed towards the annotated transcription start sites (TSSs) and enriched in previously identified transcription factors binding motifs. Furthermore, the nucleosomes are predicted to have strong presence in the uncovered CNS than random intergenic sequences alone. Altogether the evidence presented in the thesis points to the functional nature of the CNSs. Then, the promoters of genes thought to be co-regulated together and transcriptionally active during infection with fungal pathogen Botrytis cinerea are experimentally tested for direct protein-DNA interaction using high-throughput Yeast One-Hybrid (Y1H) library screens against the TFs found in A. thaliana. The resulting predictions were further validated using pairwise Y1H screen to suggest potential common regulation by ORA59, PIF7, ESE1, At4g38900 and ERF14, and uncovering a complex gene regulatory network (GRN) associated with the tested genes. The promoter fragments together with the predictions from the Y1H screens were used in the computational analysis to establish transcription factor specific binding motifs. Some of the newly predicted motifs were mutated and tested again for altered binding of the associated TFs. Furthermore, in planta mutations of the TFs predicted to be interacting with the promoters of the genes in the Y1H screens were found to have significant impact on the susceptibility of A. thaliana to infection with B. cinerea, further informing gene regulatory network active in response to biotic stress

    Wigwams : identifying gene modules co-regulated across multiple biological conditions

    Get PDF
    Motivation: Identification of modules of co-regulated genes is a crucial first step towards dissecting the regulatory circuitry underlying biological processes. Co-regulated genes are likely to reveal themselves by showing tight co-expression, e.g. high correlation of expression profiles across multiple time series datasets. However, numbers of up- or downregulated genes are often large, making it difficult to discriminate between dependent co-expression resulting from co-regulation and independent co-expression. Furthermore, modules of co-regulated genes may only show tight co-expression across a subset of the time series, i.e. show condition-dependent regulation. Results: Wigwams is a simple and efficient method to identify gene modules showing evidence for co-regulation in multiple time series of gene expression data. Wigwams analyzes similarities of gene expression patterns within each time series (condition) and directly tests the dependence or independence of these across different conditions. The expression pattern of each gene in each subset of conditions is tested statistically as a potential signature of a condition-dependent regulatory mechanism regulating multiple genes. Wigwams does not require particular time points and can process datasets that are on different time scales. Differential expression relative to control conditions can be taken into account. The output is succinct and non-redundant, enabling gene network reconstruction to be focused on those gene modules and combinations of conditions that show evidence for shared regulatory mechanisms. Wigwams was run using six Arabidopsis time series expression datasets, producing a set of biologically significant modules spanning different combinations of conditions. Availability and implementation: A Matlab implementation of Wigwams, complete with graphical user interfaces and documentation, is available at: warwick.ac.uk/wigwams

    Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies

    No full text
    We have used high-throughput Illumina sequencing to identify novel recombinants between Deformed wing virus (DWV) and Varroa destructor virus-1 (VDV-1), which accumulate to higher levels than DWV in both honeybees and Varroa destructor mites. The recombinants, VDV-1(VVD) and VDV-1(DVD1) exhibit crossovers between the 5'-UTR and the regions encoding the structural (capsid) and non-structural viral proteins. This implies that the genomes are modular and that each region may evolve independently, as demonstrated in human enteroviruses. Individual honeybee pupae were infected with a mixture of observed recombinants and DWV. A strong correlation was observed between VDV-1(DVD) levels in honeybee pupae and associated mites, suggesting that this recombinant, with a DWV-derived 5'-UTR and non-structural protein region flanking a VDV-1-derived capsid-encoding region, is better adapted to transmission between V. destructor and honeybees than the parental DWV or a recombinant bearing the VDV-1-derived 5'-UTR (VDV-1(VVD)).</p
    corecore